An online data-driven approach for performance prediction of electro-hydrostatic actuator with thermal-hydraulic modeling
Songlin Nie,
Jianhang Gao,
Zhonghai Ma,
Fanglong Yin and
Hui Ji
Reliability Engineering and System Safety, 2023, vol. 236, issue C
Abstract:
The Electro-Hydrostatic Actuator (EHA) plays an essential part in power-by-wire (PBW) systems due to its compact volume and high power density ratio. However, it is fairly usual for the performance of a highly integrated EHA to be adversely affected by heat dissipation. In this paper, taking into account the effect of physical heat characteristics, thermal network model is created to depict the heat dissipation of an EHA system. A dynamic performance degradation model is enhanced to appropriately evaluate the performance of the EHA system. A novel real-time corrected thermal network model based on artificial neural network (RCTN-ANN) is developed, the key idea of the proposed model is to correct parameters by using trained RCTN-ANN model and online data, and simulate the performance deterioration of online EHA, which can then be used for prognostics and health management (PHM) of EHA under actual working conditions. Validated using actual EHA experiment, the results show that the proposed method provides an accurate performance prediction with dynamic data, which is significant for the real-time PHM of the EHA system.
Keywords: Electro-hydrostatic actuator (EHA); Thermal network model; Dynamic performance degradation; Artificial neural network (ANN) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023002041
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002041
DOI: 10.1016/j.ress.2023.109289
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().