A data aggregation-based spatiotemporal model for rail transit risk path forecasting
Gang Xue,
Shifeng Liu,
Long Ren and
Daqing Gong
Reliability Engineering and System Safety, 2023, vol. 239, issue C
Abstract:
Failure-related urban rail events can disrupt transit system operations and traffic flow and lead to serious safety problems worldwide. A domino effect can occur if potential cascading events of major failures are not effectively mitigated and controlled. Therefore, accurate risk path forecasting in rail transit systems is a significant and challenging task. Because of the limitations of traditional models in terms of computational power and feature extraction capabilities, this paper proposes a probabilistic deep learning framework that can process multisource data for risk path forecasting in urban rail transit. This paper first proposes a method for constructing a large-scale risk path ground truth dataset when fault events occur. Then, the framework uses a graph-based feature mapping method to model social media, passenger flow, and station failure information. Finally, we proposed a spatiotemporal feature extractor and a dynamic difference weighting loss function to extract features and optimize parameters. We apply real-world data from 2018 to 2019 from the Beijing urban rail transit system for experimental analysis. The analyzed results demonstrate that the proposed model exceeds the baseline models by at least 2.9% in terms of F1 value, fusing multi-source data exceeds using single-source data by at least 14% in terms of F1 value and the proposed attention mechanism and dynamic loss function weights can effectively improve the forecasting performance of the model. Furthermore, the results of the different steps ahead demonstrate that the above results are robust. The application of the model can effectively handle safety issues such as cascade failures.
Keywords: Risk path forecasting; Urban railway transit; Failure probability; Multi-source data; Deep learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023004441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023004441
DOI: 10.1016/j.ress.2023.109530
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().