Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments
Xuan Liu,
Huixing Meng,
Xu An and
Jinduo Xing
Reliability Engineering and System Safety, 2024, vol. 241, issue C
Abstract:
Blowout accidents are prone to generate personal casualties, property losses, and even environmental disasters. To alleviate the consequences of accidents, it is essential to conduct effective emergency operations and update emergency schemes when necessary. In the update of the emergency plan, how to effectively optimize the allocation of resources is an open question. To deal with above difficulties, we propose a hybrid methodology by integrating the functional resonance analysis method (FRAM) and reinforcement learning (RL) for updating and optimizing emergency schemes. In the proposed methodology, FRAM is utilized to model the emergency response process based on function, variability, and coupling. Since the environment of emergency operations usually changes, RL is introduced to update emergency schemes that are constructed by FRAM. The selection of reward value by the agent reflects the variability of functional nodes in the FRAM model. To optimize emergency schemes, the interval analytic hierarchy process is integrated with multi-objective decision-making to analyze the duration, cost, and exposure risk of emergency operations. The installation of a capping stack, an emergency technique for deepwater blowout accidents, is employed to illustrate the applicability of the methodology. The results show that the proposed model is beneficial to determine emergency actions adapted to condition or scenario change in accidents.
Keywords: Emergency scheme; Functional resonance analysis model; Reinforcement learning; Multi-objective decision making (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023005690
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005690
DOI: 10.1016/j.ress.2023.109655
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().