Resilience evaluation of UAV swarm considering resource supplementation
Linghao Kong,
Lizhi Wang,
Zhongzheng Cao and
Xiaohong Wang
Reliability Engineering and System Safety, 2024, vol. 241, issue C
Abstract:
In open-resource environments, unmanned aerial vehicle (UAV) swarms typically dynamically supplement and replace UAVs in the event of mission loss. During this process, there is a high degree of uncertainty and volatility regarding mission reliability. Solving the problem of resilience evaluation of the multidimensional characteristics of UAV swarms under resource supplementation is important to ensure the highly reliable operation of UAV swarms. In this study, we examined the impact of resource supplementation on the resilience of UAV swarms with respect to the resilience characteristics associated with the multidimensional topological features of the swarm. The mathematical concept of resilience and the specific characteristics of the UAV swarm were analyzed. By combining the two, a three-layer metric framework for UAV swarm resilience evaluation was proposed. On this basis, by considering the impact of resource supplementation, a resilience evaluation method was established using the theories of complex networks, flow networks, and multi-agent system simulation. Finally, a comparative and orthogonal-experiment case study was conducted with a UAV swarm confrontation scenario. The important factors and optimal benefits of the resilient recovery were analyzed based on the quantity, speed, and threshold of resource supplementation to guide the use of UAV swarms.
Keywords: Resilience evaluation; Swarm; UAV; Resource supplementation; Complex network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023005872
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005872
DOI: 10.1016/j.ress.2023.109673
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().