Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation
Henrique O. Caetano,
Luiz Desuó N.,,
Matheus S.S. Fogliatto and
Carlos D. Maciel
Reliability Engineering and System Safety, 2024, vol. 241, issue C
Abstract:
The proper functioning of critical infrastructures is vital for supporting the economy and social welfare worldwide. Therefore, several methods were developed to assess the resilience of such systems in the face of disruptive events. This work proposes a novel probabilistic approach to the resilience assessment of critical infrastructures using a dynamic Bayesian network (DBN) to model resilience curves and cumulative impact in the face of failures. The DBN’s structure is based on the physical connections of the system, allowing for a more generalist methodology. Additionally, evidence propagation allows for a scenario-driven approach. Any failure and repair scenario is modelled as evidenced in the DBN, allowing all other nodes’ conditional probabilities to be updated accordingly. An Electric Power Distribution System is used to validate the methodology, and results show the ability of the DBN coupled with evidence propagation to assess the resilience of complex systems. Different failure scenarios and restorative actions are considered, resulting in comparative results which can guide decisions and investments in the system.
Keywords: Dynamic Bayesian networks; Resilience; Critical infrastructures; Evidence propagation; Scenario analysis (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006051
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006051
DOI: 10.1016/j.ress.2023.109691
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).