EconPapers    
Economics at your fingertips  
 

A probabilistic-driven framework for enhanced corrosion estimation of ship structural components

Krzysztof Woloszyk and Yordan Garbatov

Reliability Engineering and System Safety, 2024, vol. 242, issue C

Abstract: The work proposes a probabilistic-driven framework for enhanced corrosion estimation of ship structural components using Bayesian inference and limited measurement data. The new approach for modelling measurement uncertainty is proposed based on the results of previous corrosion tests that incorporate the non-uniform character of the corroded surface of structural components. The proposed framework's basic features are outlined, and the detailed algorithm is presented. Further, the proposed framework is validated by comparison with the classical statistical approach and mass measurements, considering previous experimental work results. Notably, the impact of the number of measuring points is investigated, and the accuracy index is proposed to identify the optimum number of measurements. The developed framework has a significant advantage over the classical approach since measuring uncertainty is incorporated. Additionally, the confidence intervals of both mean value corrosion depth and standard deviation could be gathered due to the probabilistic character of the framework. Thus, the presented approach can potentially be used in the structural health monitoring of ship structural components and reliability analysis.

Keywords: Corrosion; Structural health monitoring; Bayesian inference; Ship structures; Uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202300635X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300635x

DOI: 10.1016/j.ress.2023.109721

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300635x