EconPapers    
Economics at your fingertips  
 

Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines

Jian Wang, Shibin Gao, Long Yu, Xingyang Liu, Ferrante Neri, Dongkai Zhang and Lei Kou

Reliability Engineering and System Safety, 2024, vol. 242, issue C

Abstract: Overhead contact lines (OCLs) are electric transmission lines that power railways, which are constantly threatened by external weather and environmental factors due to their outdoor location. Hence, for the long-term functioning of railway lines, a weather-driven risk predictor is an essential tool. Current prediction methods mainly adopt a single-point estimation system with fixed weights of neural networks and therefore cannot propagate the uncertainties within the data and model, resulting in unreliable predictions. To enhance safety-risk prevention capabilities, this paper proposes an uncertainty-aware trustworthy weather-driven failure-risk approach for OCLs, in a probabilistic deep multitask learning framework. Firstly, a deep Gaussian process is employed as the backbone model to deal with imbalanced weather-related failure datasets with limited fault samples. Moreover, a multi-task learning framework is embedded to simultaneously predict the multiple weather-driven failure risks under lightning, wind and haze. Finally, the predictive uncertainty is decomposed into epistemic and aleatory uncertainties, where epistemic and aleatory uncertainties account for the uncertainty within the model and data, respectively. Extensive experiments on actual OCLs are carried out to demonstrate the effectiveness of the proposed approach, which can effectively capture the predictive uncertainty and provide trustworthy predictive decisions of mitigating operational risk for railway operators.

Keywords: Overhead contact lines; Weather; Multi-task learning; Imbalanced dataset; Probabilistic deep learning; Uncertainty evaluation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006488
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006488

DOI: 10.1016/j.ress.2023.109734

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006488