Single gated RNN with differential weighted information storage mechanism and its application to machine RUL prediction
Sheng Xiang,
Penghua Li,
Yi Huang,
Jun Luo and
Yi Qin
Reliability Engineering and System Safety, 2024, vol. 242, issue C
Abstract:
The full-life data of machine is complex and abundant, requiring specialized and deep predictive models for accurate forecasts. However, achieving high prediction accuracy often increases model complexity, hindering edge deployment. To address this, several lightweight regression operators named single gated recurrent neural networks have been first proposed, striking a balance between accuracy and simplicity, and exploring the contribution of different gates in RUL prediction. In addition, during the whole degeneration process of machines, there exists global tendency and local vibration, different trends should be learned differentially. Thus, a novel lightweight differential learning mechanism called differential weighted information storage mechanism is proposed, which adopts different weight updated rules to make the weights store different trend information without any parameters added. Based on the above improvement, several lightweight single gated recurrent neural networks with the differential weighted information storage mechanism are first proposed. Then, deep learning frameworks are constructed by the proposed operators and adopted in gears and aero-engines RUL prediction. The experiment results show the outperformance of the proposed methods in accuracy and computation burden compared with recent works.
Keywords: RUL prediction; Single gated; Differential learning; Deep learning; Machine (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006555
DOI: 10.1016/j.ress.2023.109741
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().