Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions
Yuan Li,
Jingwei Li,
Huanjie Wang,
Chengbao Liu and
Jie Tan
Reliability Engineering and System Safety, 2024, vol. 242, issue C
Abstract:
Remaining useful life (RUL) prediction is essential in enhancing the safety and reliability of rotating machinery. Deep learning techniques have been extensively researched and demonstrated promising results in RUL prediction tasks. But most existing models are designed for machinery equipment in a specific condition. In this case, a novel prediction method, knowledge-enhanced convolutional Transformer ensemble model (KE-CTEM), is proposed in this study. First, a feature extraction neural network (FENN) is introduced to extract features and transfer the working conditions information of existing datasets as knowledge to downstream RUL prediction tasks. Then, a convolutional Transformer model is leveraged to capture the input data degradation patterns and predict RUL values. Finally, knowledge-enhanced strategy and ensemble strategy are proposed to enhance the robustness of the model and improve the prediction accuracy.
Keywords: Remaining useful life; Ensemble learning; Attention mechanism; Convolutional neural network; Transfer learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006622
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006622
DOI: 10.1016/j.ress.2023.109748
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().