EconPapers    
Economics at your fingertips  
 

Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning

You Keshun, Qiu Guangqi and Gu Yingkui

Reliability Engineering and System Safety, 2024, vol. 242, issue C

Abstract: In this study, a deep learning-based probabilistic remaining useful life (RUL) prediction model is proposed to improve the strong prior limitations of traditional probabilistic RUL prediction methods through a flexible prior distribution and strategy for sequential optimization of hyperparameters with regularization factor. It enables output richer probabilistic lifetime density distributions and confidence intervals with various parameters and overcome the problem of poor accuracy of short RUL predictions to some extent. Eventually, the model is effectively validated on a benchmark dataset, and the experimental results show that the probabilistic lifetime prediction model with optimized prior distribution parameters significantly improves prediction performance and demonstrates good learning performance and robustness of test results compared with traditional point estimation methods and parameter-free models. This study informs maintenance decisions and reliability assessments in engineering systems and guides the research and application of probabilistic-based prediction methods in deep learning framework.

Keywords: Deep learning; Probabilistic prediction; Remaining useful life (RUL); Prior distribution; Sequential optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202300707X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300707x

DOI: 10.1016/j.ress.2023.109793

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300707x