Deep feature interactive network for machinery fault diagnosis using multi-source heterogeneous data
Mengqi Miao and
Jianbo Yu
Reliability Engineering and System Safety, 2024, vol. 242, issue C
Abstract:
Infrared thermal images have been applied for monitoring health condition of machines due to the noncontact and nonintrusive manner. While fault diagnosis performance of those deep neural networks (DNNs) that use infrared thermal images is restricted by the information learned from single sensor. In this study, multi-source heterogeneous data (i.e., infrared thermal images and vibration signals) are used for machinery fault diagnosis. A new DNN, i.e., deep feature interactive network (DFINet) is proposed for machinery fault diagnosis, where a novel interactive feature extraction module is developed for adaptive feature fusion on multi-source heterogeneous data. Firstly, the private and public features of multi-source heterogeneous data are extracted separately by measuring the distribution discrepancy between heterogeneous features in the feature interactive module. The feature splicing is implemented to interactively fuse common fault features of heterogeneous data and to preserve private unique features. A global feature fusion module is further proposed for adaptive fusion of superficial local features and deep abstract features learned by different feature interactive modules. The experimental results on a rotor test-bed and gearbox test-bed indicate that DFINet is promising for fusion and feature extraction on multi-source heterogeneous data in machinery fault diagnosis.
Keywords: Machinery fault diagnosis; Multi-source heterogeneous data; Deep neural network; Feature interaction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023007093
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023007093
DOI: 10.1016/j.ress.2023.109795
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().