EconPapers    
Economics at your fingertips  
 

A novel data augmentation approach to fault diagnosis with class-imbalance problem

Jilun Tian, Yuchen Jiang, Jiusi Zhang, Hao Luo and Shen Yin

Reliability Engineering and System Safety, 2024, vol. 243, issue C

Abstract: Data-driven fault diagnosis techniques are frequently applied to ensure the reliability and safety of industrial systems. However, as a common challenge, the class-imbalance problem reduces the performance of data-driven methods due to the lack of data information. We propose a weighted modified conditional variational auto-encoder (WM-CVAE) as a novel data augmentation technique to tackle the issue. The modified structure can alleviate the existing Kullback–Leibler (KL) divergence vanishing by an adaptive loss. Meanwhile, kernel mean matching (KMM) is proposed on weight computation to reduce the negative effect of dissimilar generated samples. Constructing the WM-CVAE data augmentation framework can effectively improve the data quality and learning capability in class-imbalance fault diagnosis. To validate the proposed WM-CVAE model, three real-world industrial datasets are used as study objects, and the random forest is used as the base learner in the fault classification tasks. The diagnostic results demonstrate that the proposed WM-CVAE data augmentation framework can improve learning results in class-imbalance fault diagnosis.

Keywords: Class imbalance; Fault diagnosis; Conditional variational auto-encoder; Kullback–Leibler Divergence Vanishing; Kernel mean matching (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023007469
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007469

DOI: 10.1016/j.ress.2023.109832

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007469