EconPapers    
Economics at your fingertips  
 

RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network

Jimeng Li, Weilin Mao, Bixin Yang, Zong Meng, Kai Tong and Shancheng Yu

Reliability Engineering and System Safety, 2024, vol. 243, issue C

Abstract: Rolling bearings are widely used in mechanical equipment, effectively determining the failure time of rolling bearings is particularly significant to ensure the safe performance of mechanical equipment. However, in industrial scenarios, the machine mainly works in the normal state for a long time, it is difficult to accumulate the same distribution of the whole life data, but the use of different distribution of data for forecasting will reduce the performance of deep learning-based prediction methods. Therefore, in order to tackle this problem, a multi-scale convolutional parallel memory domain adaptation network is investigated to forecast the residual useful life (RUL) of bearings across working conditions. Firstly, a new characteristic extractor—multi-scale convolutional parallel memory network is designed to extract spatial and temporal characteristics of bearing degradation data. At the same time, in order to minimize the distribution difference between source domain and target domain, a temporal-spatial feature alignment strategy is proposed to obtain domain invariable characteristics by combining maximum mean difference and domain adversarial learning. Finally, the availability of the proposed approach is verified using two rolling bearing data sets. The results reveal that it can efficiently forecast the RUL of rolling bearings across working conditions.

Keywords: Rolling bearing RUL prediction; Multi-scale convolution; Parallel memory network; Across working conditions; Domain adaptation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023007688
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007688

DOI: 10.1016/j.ress.2023.109854

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007688