A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis
Jilun Tian,
Jiusi Zhang,
Yuchen Jiang,
Shimeng Wu,
Hao Luo and
Shen Yin
Reliability Engineering and System Safety, 2024, vol. 243, issue C
Abstract:
Domain adaptation has been widely applied in data-driven fault diagnosis tasks to address the domain shift problem between source and target data. However, conventional domain adaptation methods require both domains to be known, which is not always feasible due to privacy concerns and big data transmission. To overcome this limitation, a dedicated method called source-free domain adaptation (SFDA) has been developed to ensure reliable performance without relying on source data during target model adaptation. SFDA can achieve accurate classification tasks under domain shift problems and source data-free scenarios. We propose a generalized source model with manifold Mixup data augmentation and label smoothing techniques to avoid overfitting during the source model training. Based on this model, a novel self-training framework is proposed to implement the domain adaptation task and achieve accurate prediction performance. The experimental results from three real-world datasets demonstrate the effectiveness of the proposed approach.
Keywords: Source-free domain adaptation; Fault diagnosis; Self-training; Neural networks; Manifold mixup augmentation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023008050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008050
DOI: 10.1016/j.ress.2023.109891
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().