Different methods for RUL prediction considering sensor degradation
Hassan Hachem,
Hai Canh Vu and
Mitra Fouladirad
Reliability Engineering and System Safety, 2024, vol. 243, issue C
Abstract:
Predicting the Remaining Useful Lifetime (RUL) of a system has become one of the primary goals of engineering and reliability researchers. RUL prediction is based on the measurement data collected from sensors (e.g. vibration data, temperature data). The collected data is may be inaccurate owing to sensor problems. These problems are often ignored or modeled by a Gaussian noise in most previous work. However, due to various operation circumstances and the aging impact, the sensor itself will ultimately deteriorate and its performance will deteriorate. The Gaussian noise with a constant mean is then not appropriate to fully capture the sensor degradation. In this context, this study focuses on predicting the RUL considering the sensor degradation. For this purpose, a joint model of sensor degradation and system degradation is firstly developed. In this model, the sensor degradation is modeled by Wiener and Gamma processes instead of Gaussian noise. Then, different estimation methods based on the particle filter, a popular model-based technique, were proposed to predict the RUL based on the joint degradation model. To study the performances of our methods, numerical analyzes were carried out. The obtained results confirm the performance and advantages of the proposed methods.
Keywords: System degradation; Sensor degradation; Particle filter; Remaining useful lifetime (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023008116
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008116
DOI: 10.1016/j.ress.2023.109897
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().