Evaluating the transmission distance-constrained reliability for a multi-state flow network
Xiu-Zhen Xu,
Run-Hui Zhou,
Guo-Lin Wu and
Yi-Feng Niu
Reliability Engineering and System Safety, 2024, vol. 244, issue C
Abstract:
Reliability features in judging the performance of various technical networks (e.g., logistics network and communication network) that can be deemed as a multi-state flow network (MFN). The existing studies dedicate to computing the reliability of an MFN without transmission distance constraint. However, transmission distance is a major concern in some practical applications. For example, there is a strict limit on the transmission distance in a wireless communication network so as to ensure the successful transmission of packets within the allowed delay. This paper, thus, concentrates on the transmission distance-constrained reliability of an MFN, denoting the probability that at least d units of flow can be transmitted from the source to the sink with the transmission distance no larger than a predetermined value D. To reduce the computational complexity, a universal approach is presented to identify and remove redundant edges with no contribution to network reliability. Moreover, a novel model is developed to seek all (D,d)−minimalpaths((D,d)−MPs) based on which an efficient algorithm is put forward to calculate the transmission distance-constrained reliability of an MFN. A large example is discussed to explore the influence of transmission distance on MFN reliability, and a practical case study is provided to demonstrate the utility of the proposed algorithm.
Keywords: Reliability; Multi-state flow network; Transmission distance; d-MP (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023008141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008141
DOI: 10.1016/j.ress.2023.109900
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().