An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis
Zeyun Zhao,
Jia Wang,
Qian Tao,
Andong Li and
Yiyang Chen
Reliability Engineering and System Safety, 2024, vol. 244, issue C
Abstract:
Wafer maps include information about multiple defect patterns on the wafer surface. Intelligent categorization of the defective wafer is essential for investigating the underlying causes and improving the reliability and safety of the entire system. Recently, convolutional neural networks (CNNs) have been widely employed to construct successful defect detectors by learning from offline defect datasets. However, traditional CNN-based detectors are costly and incapable of unknown production defect detection despite the accurate performance. In this paper, we propose a novel IL-based method, called PIRB, for online unknown wafer defect detection. Specifically, we leverage the neural networks to remember old defect patterns by selectively restricting learning on the important weights. A tiny reference buffer is applied to preserve the experienced wafer defect patterns in the learning process to facilitate the detection accuracy. The experimental results show that the proposed method works well for classifying unknown defects, with a 60% reduction in training time compared to offline learning and a 10% increase in total accuracy compared to the state-of-the-art methods.
Keywords: Wafer; Semiconductor manufacturing; Unknown defect; Incremental learning; Online learning; Data augmentation; CNN (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024000413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000413
DOI: 10.1016/j.ress.2024.109966
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().