EconPapers    
Economics at your fingertips  
 

A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction

Hang Zeng, Hongmei Zhang, Jiansheng Guo, Bo Ren, Lijie Cui and Jiangnan Wu

Reliability Engineering and System Safety, 2024, vol. 246, issue C

Abstract: Accurate prediction of aviation failure events helps to anticipate future safety situations and protect against further uncontrollable accidents. However, the large sample size, complex temporal characteristics, and significant long-term correlation of aviation failure events increase the operational cost of accurate prediction. To address these challenges, this paper proposes a novel approach involving seasonal-trend decomposition using Loess (STL) and a hybrid prediction model consisting of a transformer and autoregressive integrated moving average (ARIMA). First, STL decomposition is utilized to isolate trend, seasonal, and remainder components, contributing to a comprehensive understanding of the events sample characteristics. The trend component is then trained and predicted using transformer, solving the vanishing gradient problem and improving computational efficiency. ARIMA is employed to train and predict the seasonal and remainder components, maintaining accuracy while reducing complexity. Finally, a comparative evaluation between the proposed and multiple existing approaches is conducted using Aviation Safety Reporting System (ASRS) data. The results demonstrate that the STL-transformer-ARIMA provides more accurate predictions of failure events than single model. It also exhibits significant advantages in robustness and generalization capacity compared to single transformer-based predictors. This revealed that the proposed approach performed better in predicting aviation failure events.

Keywords: Aviation safety; Failure events prediction; Hybrid approach; STL decomposition; Transformer; ARIMA (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024001637
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001637

DOI: 10.1016/j.ress.2024.110089

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001637