EconPapers    
Economics at your fingertips  
 

Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal

Xinglin Li, Luofeng Xie, Bo Deng, Houhong Lu, Yangyang Zhu, Ming Yin, Guofu Yin and Wenxiang Gao

Reliability Engineering and System Safety, 2024, vol. 247, issue C

Abstract: The hydrodynamic mechanical seal (HDMS) in the reactor coolant pump of third-generation nuclear power units is vulnerable to failure due to prolonged operational periods and inevitable wear. However, traditional fault diagnosis methods are not robust to noise and can not leverage both the topological relationships among samples and local features. To resolve these challenges, in this paper, we propose a novel graph convolutional network (GCN) for wear fault diagnosis of HDMS called deep dynamic high-order graph convolutional network (DDHGCN). A dynamic graph learning module is designed to control the connectivity and sparsity of the iterated graph and thus eliminate errors and redundancies caused by noise. A high-order GCN module is proposed to effectively model the correlations between nodes, capturing contextual information and mutual influences among them. A residual convolutional module is applied to extract local features hidden in individual samples to further improve the classification performance. All three modules are jointly optimized for reliable wear fault diagnosis of HDMS. Experimental results demonstrate that our DDHGCN can achieve higher performance when compared with the state-of-the-arts.

Keywords: Hydrodynamic mechanical seal; Wear fault diagnosis; Graph learning; Graph convolutional network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024001911
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001911

DOI: 10.1016/j.ress.2024.110117

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001911