Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction
Amandine Marrel and
Bertrand Iooss
Reliability Engineering and System Safety, 2024, vol. 247, issue C
Abstract:
In reliability engineering studies, computer codes are increasingly used to model physical phenomena which, in many cases, can be very time-consuming to run. A widely accepted approach consists in approximating the CPU-time expensive computer model by a surrogate model. One of the most popular surrogate model is the Gaussian Process regression, as it provides, additionally to a prediction at an unobserved point, an uncertainty around this prediction (a predictive distribution). However, in practice, the quality of this metamodel depends on several choices, as the estimation and validation algorithms. The present work aims at proposing a new algorithm, based on constrained optimization multi-objective techniques, to estimate the Gaussian process hyperparameters in order to ensure robust and accurate (i.e. reliable) predictive distribution of the Gaussian process. An intensive numerical benchmark on various analytical functions, with different input dimensions and learning sample sizes, shows its good performance in comparison with standard estimation algorithms. The new algorithm is also applied to a real test case modeling an aquatic ecosystem. It is compared with a recent robust and sophisticated Bayesian method; it proves to be as efficient while being less sensitive to the specification of the Gaussian process model.
Keywords: Computer experiments; Gaussian process regression; Machine learning; Optimization; Uncertainty; Validation criteria (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024001947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001947
DOI: 10.1016/j.ress.2024.110120
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().