Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings
Jinxin Wu,
Deqiang He,
Jiayi Li,
Jian Miao,
Xianwang Li,
Hongwei Li and
Sheng Shan
Reliability Engineering and System Safety, 2024, vol. 247, issue C
Abstract:
Accurate remaining useful life (RUL) prediction of rolling bearings plays a vital role in ensuring the safe operation of mechanical equipment. Graph-based models have become an emerging trend in RUL prediction by converting monitoring samples into graph structures to capture samples’ relationships effectively. However, graph-based models only use pairwise samples to model the relationships between samples and cannot capture the non-pairwise high-order relationships between multiple samples. Besides, graph-based models rely heavily on predefined graphs to aggregate relevant features. The bearing monitoring datasets have no explicit structure, and the predefined graph structures cannot characterize datasets. Aiming at these issues, a temporal multi-resolution hypergraph attention network (T-MHGAT) is proposed. Firstly, the bearings’ monitoring samples are established and fused into a multi-resolution hypergraph (MHG) to characterize the potential structure of bearings monitoring datasets. Then, a hypergraph attention network (HGAT) is designed to mine the high-order relationships between signal samples on hypergraph data. Meanwhile, multiple gated recurrent units (GRUs) are constructed to capture the signal samples’ temporal information. Finally, the linear layer is built after GRUs to output RUL prediction values. Many experiments on two rolling bearing datasets showed the effectiveness of T-MHGAT, which can lay the foundation for predictive equipment maintenance.
Keywords: Remaining useful life prediction; Rolling bearings; Multi-resolution hypergraph; Hypergraph neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024002175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002175
DOI: 10.1016/j.ress.2024.110143
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().