Optimal allocation of financial resources for ensuring reliable resilience in binary-state network infrastructure
Wei-Chang Yeh and
Wenbo Zhu
Reliability Engineering and System Safety, 2024, vol. 250, issue C
Abstract:
In the dynamic landscape of network infrastructures, safeguarding resilience in binary-state systems has emerged as a focal point. This study delves into optimal financial resource allocation strategies to ensure that binary-state networks exhibit consistent and dependable recovery capabilities in the face of adversities, while satisfying the required reliability. Through a comprehensive exploration, we underscore the significance of resilience that is not only robust but also reliable and capable of surviving consecutive breakdowns. By zeroing in on binary-state networks, typified by their components exhibiting either operational or non-operational states, we elucidate strategic measures to fortify their intrinsic recovery mechanisms. Our research introduces a pioneering perspective on the imperative of astute resource distribution to achieve unyielding and trustworthy recovery processes amidst network disturbances. Furthermore, we present an innovative algorithm grounded in the binary-addition-tree algorithm (BAT) and stepwise vectors to adeptly address the problem. This study contributes to the discourse on reliable resilience, a novel form of resilience that enables a system to repeatedly recover from a series of unexpected failures, all within a limited and fixed recovery budget, while maintaining a required reliability and consistency in performance.
Keywords: Binary-state Network Infrastructures; Reliable Resilience; Financial resource allocation; Intrinsic recovery mechanisms; Binary-Addition-Tree Algorithm (BAT) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024003375
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003375
DOI: 10.1016/j.ress.2024.110265
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().