EconPapers    
Economics at your fingertips  
 

ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis

Tian Yu, Chaoshun Li, Jie Huang, Xiangqu Xiao, Xiaoyuan Zhang, Yuhong Li and Bitao Fu

Reliability Engineering and System Safety, 2024, vol. 251, issue C

Abstract: Effective bearing fault diagnosis is crucial to ensure the safety and reliability of mechanical systems. Due to the complex and harsh working environment, mechanical data often comes from imbalanced datasets, which is a pressing problem in diagnosis applications. However, currently proposed data augmentation methods mainly based on generative adversarial networks, remain challenging in balancing the quality and diversity of the generation samples. To solve it, this paper proposes a new data enhancement method called the reparameterized residual denoising diffusion probability model (ReF-DDPM) and applies it to fault diagnosis. The proposed architecture includes a forward diffusion process and a reverse denoising process, where Gaussian noise and original samples are transformed by Markov chains. To improve the quality of generation samples, the noise prediction network is modified for better feature representation by enhancing intra-level and inter-level features. Furthermore, signal labels are added to the model as conditional information to direct the generation of relevant category samples during the sampling process. The study provides a new data augmentation method for bearing imbalanced data, and generation data can be further used for fault diagnosis tasks. Verification experiments demonstrate the effectiveness and good generalization of the method, and improve the accuracy of imbalance fault diagnosis.

Keywords: Fault diagnosis; Denoising diffusion probability model; Rolling bearing; Data augmentation; Imbalanced data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024004150
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004150

DOI: 10.1016/j.ress.2024.110343

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004150