Supervised contrastive learning based dual-mixer model for Remaining Useful Life prediction
En Fu,
Yanyan Hu,
Kaixiang Peng and
Yuxin Chu
Reliability Engineering and System Safety, 2024, vol. 251, issue C
Abstract:
The problem of the Remaining Useful Life (RUL) prediction, aiming at providing an accurate estimate of the remaining time from the current predicting moment to the complete failure of the device, has gained significant attention from researchers in recent years. In this paper, to overcome the shortcomings of rigid combination for temporal and spatial features in most existing RUL prediction approaches, a spatial–temporal homogeneous feature extractor, named Dual-Mixer model, is firstly proposed. Flexible layer-wise progressive feature fusion is employed to ensure the homogeneity of spatial–temporal features and enhance the prediction accuracy. Secondly, the Feature Space Global Relationship Invariance (FSGRI) training method is introduced based on supervised contrastive learning. This method maintains the consistency of relationships between sample features with their degradation process during model training, simplifying the subsequently regression task in the output layer and improving the model’s performance in RUL prediction. Finally, the effectiveness of the proposed method is validated through comparisons with other latest research works on the C-MAPSS dataset. The Dual-Mixer model demonstrates superiority across most metrics, while the FSGRI training method shows an average improvement of 7.00% and 2.41% in RMSE and MAPE, respectively, for all baseline models. Our experiments and model code are publicly available at https://github.com/fuen1590/PhmDeepLearningProjects.
Keywords: Remaining Useful Life; Contrastive learning; Deep learning; Multilayer perceptron (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024004708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004708
DOI: 10.1016/j.ress.2024.110398
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().