Performance-based reliability assessment of transmission lines under tornado actions
Felipe C. Macedo,
Alminhana, Fábio,
Leandro F. Fadel Miguel and
Beck, André T.
Reliability Engineering and System Safety, 2024, vol. 252, issue C
Abstract:
Transmission lines (TL) are a very important part of our infrastructure. Their design is still mainly based on a single extreme value wind speed, evaluated from synoptic or mixed wind speed records, whereas non-synoptic (e.g. tornado and downbursts) winds are responsible for up to 80% of weather-related TL collapses. In this manuscript a methodology is proposed to evaluate the reliability of complete TL segments, considering the large uncertainties in wind speeds, tornado diameter and relative trajectory w.r.t. TL supports (tower offset). The Performance-Based Wind Engineering framework is employed to account for the uncertainties in wind speeds, tornado diameter and tower offset. A compact non-linear dynamic scheme is employed to handle the material and geometric non-linearities of a tower-cable TL segment, capturing the influence of cables in the dynamic response of the TL. Mean wind profiles and turbulent velocity field models are employed for simulating tornado loading in time domain. Fragility analysis is carried out for three performance levels (Serviceability, Damage control and Collapse). Results show that TL collapse is conditional on tower-hit events. The probability of a tower hit event is determined from geometrical relationships between tower span, tornado radius and tornado trajectory. The probability of a tower hit event increases significantly with tornado radius. Yet, uncertainty in tornado radius is found to be less relevant to TL vulnerability than uncertainty in wind speeds and tower offset.
Keywords: Performance-based wind design; Non-synoptic wind; Tornado actions; Transmission lines; Dynamic analysis; Fragility analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024005477
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005477
DOI: 10.1016/j.ress.2024.110475
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().