EconPapers    
Economics at your fingertips  
 

Rapid computation of survival signature for dynamic fault tree based on sequential binary decision diagram and multidimensional array

Shaoxuan Wang, Daochuan Ge, Nuo Yong, Ming Sun, Yuantao Yao, Longlong Tao, Dongqin Xia, Feipeng Wang and Jie Yu

Reliability Engineering and System Safety, 2025, vol. 253, issue C

Abstract: Many practical safety-critical systems typically exhibit sequence-dependent failure behaviors, limiting the efficiency of analyzing these systems. Although the survival signature-based method can address this problem to a certain extent, the dependence on Boolean states constrains its application to large systems. In this study, we present a novel method that leverages the sequential binary decision diagram (SBDD) and multidimensional array to rapidly compute survival signatures for dynamic fault trees (DFTs) of these systems. These dynamic nodes in the SBDD are represented through multidimensional arrays, which are then utilized as inputs for the subsequent computations. Ultimately, survival signatures are obtained by iteratively computing the multidimensional arrays. Additionally, two practical engineering cases are examined to highlight the superiority of the proposed methods over other methods. Compared with Boolean state vector-based methods, the proposed method achieves a 689-fold and 209-fold increase in efficiency for calculating survival signatures in their respective cases. Compared with the Monte Carlo (MC) simulation, the simulation efficiency for the reliability results improve by 60-fold and 201-fold in their respective cases.

Keywords: survival signature; dynamic fault trees; sequential binary decision diagram; systems reliability (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006240
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006240

DOI: 10.1016/j.ress.2024.110552

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006240