Improving port state control through a transfer learning-enhanced XGBoost model
Ruihan Wang,
Mingyang Zhang,
Fuzhong Gong,
Shaohan Wang and
Ran Yan
Reliability Engineering and System Safety, 2025, vol. 253, issue C
Abstract:
With the advancements in modern information technology, Port State Control (PSC) inspections, as a crucial measure to protect ship safety and the marine environment, are undergoing an intelligent transformation. This paper aims to streamline the selection process for inspecting high-risk ships by employing a data-driven model to predict the number of deficiencies in ships arriving at ports. A transfer learning-enhanced eXtreme Gradient Boosting (XGBoost) model is proposed by innovatively incorporating sample similarity calculations to adapt the model to the unique characteristics of the target port. This novel model enables the integration of relevant data from other ports, enhancing the predictive performance of the model to specific port conditions. Utilizing PSC inspection records from ports within the Tokyo Memorandum of Understanding (MoU) and choosing the port of Singapore as the target, numerical experiments demonstrate that the proposed model achieves improvements of 1.81 %, 6.08 %, and 3.60 % in the mean absolute error, mean squared error and root mean squared error, respectively, compared to the standard XGBoost model. Furthermore, across various sizes of training samples, the proposed model outperforms other machine learning models. This work may service as a significant step towards exploring the potential of developing data-driven models based on comprehensive data to assess the risk level of foreign ships arriving at ports, ameliorating the PSC inspection process by aiding PSC officers in identifying substandard ships more effectively.
Keywords: Port state control inspection; Deficiency prediction; Transfer learning; XGBoost (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006306
DOI: 10.1016/j.ress.2024.110558
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().