Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector
Bennett K. Widyolar,
Mahmoud Abdelhamid,
Lun Jiang,
Roland Winston,
Eli Yablonovitch,
Gregg Scranton,
David Cygan,
Hamid Abbasi and
Aleksandr Kozlov
Renewable Energy, 2017, vol. 101, issue C, 1379-1389
Abstract:
A novel hybrid solar concentrated photovoltaic thermal (PV/T) collector is designed, simulated, and tested. The PV/T system uses a parabolic trough to focus sunlight towards a nonimaging compound parabolic concentrator (CPC) that is formed of single junction Gallium Arsenide (GaAs) solar cells to simultaneously generate electricity and high temperature thermal power. The GaAs cells generate electricity from high energy photons and reflect low energy photons towards the high temperature absorber, thus maximizing the exergy output of the system. The two-stage design also allows the thermal absorber to reach a geometric concentration ratio of ∼60×, which is significantly higher than other PV/T systems and enables the absorber to reach high temperatures even under partial utilization of the solar spectrum. The modelled exergy efficiency with a thermal absorber operating at 500 °C is 37%. In the experimental setup, the maximum outlet temperature reached was 365 °C with a thermal efficiency of around 37%. The direct solar to electric efficiency from the GaAs cells was 8%. This design is capable of producing electricity directly along with high temperature thermal energy that can be stored for dispatchable electricity production and has the potential to significantly improve the exergy efficiency of parabolic troughs plants.
Keywords: Hybrid concentrated photovoltaic thermal (PV/T) system; Gallium arsenide (GaAs) solar cells; Compound parabolic concentrator (CPC); Solar thermal collector; Parabolic trough (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:101:y:2017:i:c:p:1379-1389
DOI: 10.1016/j.renene.2016.10.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().