Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil
Mohammad Reza Mehrasbi,
Javad Mohammadi,
Mazyar Peyda and
Mehdi Mohammadi
Renewable Energy, 2017, vol. 101, issue C, 593-602
Abstract:
In the present work, lipase from Candida antarctica (CALB) was covalently immobilized on functionalized magnetic nanoparticles (MNPs) to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe3O4 core with silica shell (Fe3O4@SiO2). The nanoparticles functionalized with (3-glycidoxypropyl)trimethoxylsilane (GPTMS) were used as immobilization matrix. The protein binding efficiency on functionalized Fe3O4@SiO2 was calculated as 84%, preserving 97% of specific activity of the free enzyme. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by TGA, XRD, SEM, IR, TEM and DLS. Higher thermal stability and methanol tolerance for immobilized derivatives were obtained compared to the free enzyme. The immobilized lipase was then used to produce biodiesel by transesterification of waste cooking oil with methanol. In an optimization study, the effect of oil to methanol ratio, tert-butanol and molecular sieve as water adsorbent on the yield of biodiesel production were considered. Optimum oil to methanol ratio at 1:3 was observed for immobilized CALB in biodiesel production. Molecular sieve had a great effect on yield, with almost 100% conversion. The immobilized preparation of CALB also presented a good reusability, keeping 100% of its initial activity after 6 cycles of the reaction.
Keywords: Biocatalysis; Biodiesel; Candida antarctica lipase; Immobilization; Magnetic nanoparticles; Waste cooking oil (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:101:y:2017:i:c:p:593-602
DOI: 10.1016/j.renene.2016.09.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().