EconPapers    
Economics at your fingertips  
 

Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production

Yengkhom Disco Singh, Pinakeswar Mahanta and Utpal Bora

Renewable Energy, 2017, vol. 103, issue C, 490-500

Abstract: We report here the characterization of five biomass samples (Impereta cylindrica, Eragrostis airoides, Typha angustifolia L., Arundinella khasiana Nees ex Steud, and Echinochloa stagnina (Retz.) P. Beauv) based on the proximate, ultimate and compositional analysis. The biomasses were examined physico-chemically and characterized to understand their compositional and structural properties. The moisture content was found to be highest in Typha angustifolia (13.951%) and lowest in Eragrostis airoides (8.275%). Ash content was seen to be maximum in Arundinella khasiana (8.12%) and minimum in Eragrostis airoides (3.660%). Derivative Thermogravimetric (DTG) peak was observed below 120 °C indicating the loss of water molecules from the biomass. Cellulose degradation occured between 350 °C to 500 °C. The maximum carbon content was visible in Typha angustifolia (52.895%) and minimum in Eragrostis airoides (41.024%). The FTIR spectra showed a range of peaks such as 3450 cm−1, 2860 cm−1, 1668 cm−1, 1175 cm−1, 1097 cm−1, 7872 cm−1, 625 cm−1, 554 cm−1 etc. The cellulose content was found maximum in Eragrostis airoides (43.17%) and minimum in Echinochloa stagnina (24.90%). The results demonstrate that the collected lignocellulosic biomass could be potential candidate for bioethanol production.

Keywords: Lignocellulose biomass; Cellulose; Biofuel; Thermogravimetric analysis; Crystalline index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:103:y:2017:i:c:p:490-500

DOI: 10.1016/j.renene.2016.11.039

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:490-500