EconPapers    
Economics at your fingertips  
 

Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system

Wei-Hsin Chen, Ching-Wei Tsai and Yu-Li Lin

Renewable Energy, 2017, vol. 104, issue C, 259-270

Abstract: A multichannel palladium (Pd) membrane system in association with flow bypass is designed for hydrogen separation with high recovery, and the mass transfer phenomena in the system are simulated by developing a computational fluid dynamics (CFD) model. Two Pd membranes are installed in the system. The predictions suggest that the H2 recovery (HR) can be substantially improved by the bypass. The higher the feed gas Reynolds number, the more pronounced the improvement of H2 recovery by the bypass. The HR by the first membrane is independent of the bypass ratio (BR), revealing that the enhancement of HR is completely contributed by the second membrane. An increase in H2/CO2 molar ratio in the feed gas reduces HR, but raises the H2 permeation rate. The maximum HR by the second membrane always develops at the feed gas Reynolds number (Rer,M1) of 500, regardless of bypass ratio. This reveals that the aforementioned Reynolds number is an appropriate condition for H2 separation in the designed membrane system. Based on the HR in the absence of flow bypass (i.e., BR = 0), the higher the Rer,M1, the larger the intensification of H2 permeation. A contour map and a correlation from regression analysis in terms of Rer,M1 and BR are established. Under a desired H2 recovery, the combination of Rer,M1 and BR can be suggested to provide flexible operation for H2 separation in the membrane system.

Keywords: Palladium (Pd) membrane; Multichannel membrane system; Bypass mechanism; Hydrogen separation and recovery; Regression analysis; Numerical simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310898
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:104:y:2017:i:c:p:259-270

DOI: 10.1016/j.renene.2016.12.032

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:104:y:2017:i:c:p:259-270