Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine
Biraj Singh Thapa,
Ole Gunnar Dahlhaug and
Bhola Thapa
Renewable Energy, 2017, vol. 107, issue C, 253-261
Abstract:
Opportunities of future hydropower developments in Asia comes with challenges of handling sediments in rivers. Hard minerals in flow causes turbine parts to erode with several undesirable effects. In Francis turbines, sediment erosion causes an increase of clearance gap between guide vane walls and cover plates. Due to inherit pressure difference between guide vane surfaces, a leakage flow arises from the clearance gap. A guide vane cascade is developed to study the characteristics of the leakage flow in a low specific speed Francis turbine. Velocity and pressure measurements are done at 80% of BEP flow as that in a reference prototype turbine. Cases with five different sizes of clearance gaps are investigated. Strong cross-wise jet-like leakage flow is observed from the clearance gap. A vortex filament developed due to mixing of leakage flow with the main flow is found to hit the hub at runner inlet. The existence of a critical clearance gap size for which the leakage velocity and its effects are maximum is revealed. Interpretations of the experimental results show a close match with the observations of eroded turbine parts from a power plant.
Keywords: Francis turbine; Guide vane; Sediment erosion; Cascade; PIV; Leakage flow (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117300551
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:107:y:2017:i:c:p:253-261
DOI: 10.1016/j.renene.2017.01.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().