EconPapers    
Economics at your fingertips  
 

Glass encapsulated phase change materials for high temperature thermal energy storage

Pau Gimenez-Gavarrell and Sonia Fereres

Renewable Energy, 2017, vol. 107, issue C, 497-507

Abstract: A new encapsulation method for high temperature phase change materials (PCM) is developed. Nitrate salts and metals are used as the PCM core with melting temperatures in the 300-400 °C range. Borosilicate is used as encapsulating material based on its high thermal resistance, non-reactivity and optical properties. Its transparency combined with the transparency of some PCM in the molten state allows the analysis of the melting process through visual observation. The volume expansion of the PCM is managed through a void space inside the capsules. The capsule design, fabrication, and testing is described in detail. The PCM melting and solidification process is identified using a combination of visual and infrared images. The experimental observations are complemented by a finite difference method to solve the energy equations simulating the transient melting/freezing process inside a spherical PCM. The model analyzes the effect of the convective heat transfer coefficient on the PCM capsule melting and freezing starting times and the duration of the PCM melting process. Boundary conditions are set to match those in the experimental rig developed. Results show that the main system parameters can be qualitatively assessed and adequately determined to describe the experimental observations.

Keywords: Phase change materials; Encapsulation; High temperature; Thermal energy storage; Molten salts; Glass (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117300836
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:107:y:2017:i:c:p:497-507

DOI: 10.1016/j.renene.2017.02.005

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:497-507