EconPapers    
Economics at your fingertips  
 

Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm

Tyler Phillips, Rey DeLeon and Inanc Senocak

Renewable Energy, 2017, vol. 108, issue C, 380-389

Abstract: Dynamic Line Rating (DLR) enables rating of power line conductors using real-time weather conditions. Conductors are typically operated based on a conservative static rating that assumes worst case weather conditions to avoid line sagging to unsafe levels. Static ratings can cause unnecessary congestion on transmission lines. To address this potential issue, a simulation-based dynamic line rating approach is applied to an area with moderately complex terrain. A micro-scale wind solver — accelerated on multiple graphics processing units (GPUs) — is deployed to compute wind speed and direction in the vicinity of powerlines. The wind solver adopts the large-eddy simulation technique and the immersed boundary method with fine spatial resolutions to improve the accuracy of wind field predictions. Statistical analysis of simulated winds compare favorably against wind data collected at multiple weather stations across the testbed area. The simulation data is then used to compute excess transmission capacity that may not be utilized because of a static rating practice. Our results show that the present multi-GPU accelerated simulation-based approach — supported with transient calculation of conductor temperature with high-order schemes — could be used as a non-intrusive smart-grid technology to increase transmission capacity on existing lines.

Keywords: Computational fluid dynamics; Dynamic line rating; Wind power (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117301581
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:108:y:2017:i:c:p:380-389

DOI: 10.1016/j.renene.2017.02.072

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:380-389