EconPapers    
Economics at your fingertips  
 

A reinforcement learning approach for MPPT control method of photovoltaic sources

P. Kofinas, S. Doltsinis, A.I. Dounis and G.A. Vouros

Renewable Energy, 2017, vol. 108, issue C, 461-473

Abstract: Photovoltaic arrays are the means to convert solar power into electricity, and a significant way to generate renewable and clean energy. To be efficient, a photovoltaic must generate constantly the maximum possible power and under different environmental conditions. Finding the maximum generated power has been a known issue in the industry using methods of classic control theory with very good results. However, those solutions are case-specific resulting to increased set-up effort. This work proposes a universal RLMPPT control method based on a reinforcement learning (RL) method that tracks and adjusts the maximum power point of a photovoltaic source without any prior knowledge. A Markov Decision Process (MDP) model for the Maximum Power Point Tracking (MPPT) photovoltaic process is defined and an RL algorithm is proposed and evaluated on a number of photovoltaic sources. The proposed RLMPPT control method has the advantage of being applicable to different PV sources with minimum set-up time. To evaluate the RLMPPT control method performance, a number of simulations run under different environmental and operating conditions and a comparison with the conventional method of Perturb and Observe (P&O) is performed. Results show quick response and close to optimal behavior without requiring any prior knowledge.

Keywords: Photovoltaic systems; Maximum power point tracking; On line learning; Reinforcement learning MPPT control method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117301891
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:108:y:2017:i:c:p:461-473

DOI: 10.1016/j.renene.2017.03.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:461-473