EconPapers    
Economics at your fingertips  
 

Increasing the share of renewables through adsorption solar cooling: A validated case study

Valeria Palomba, Salvatore Vasta, Angelo Freni, Quanwen Pan, Ruzhu Wang and Xiaoqiang Zhai

Renewable Energy, 2017, vol. 110, issue C, 126-140

Abstract: Tools and experience on solar thermal cooling system sizing and design are still limited, as less than one thousand plants have been built until now. In this paper, a design tool for mid-size thermal solar cooling systems is presented. The tool consists of a model realised in TRNSYS and validated using the data of a real solar air conditioning system installed in the green building of Shanghai Research Institute of Building Science. Characteristic features of the system are the use of adsorption chillers driven by low-temperature solar heat from U-type and heat pipe evacuated solar collectors. The model has subsequently been employed for a technical analysis: the most relevant parameters have been varied and figures of merit calculated. An energy analysis has been performed for 6 reference cities, differing for climates and latitudes, highlighting the possibility to use only renewable energy for cooling purposes. Eventually, the systems have been compared with reference ones. Comparison highlighted that considerable savings in primary energy and CO2 emissions can be achieved: 0.97 MWh per installed square meter of solar collectors and up to 22 tons of CO2 annually, thus indicating a great potential for increasing energy efficiency and reduce CO2 emissions.

Keywords: Solar cooling; Adsorption; Energy analysis; TRNSYS (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310643
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:110:y:2017:i:c:p:126-140

DOI: 10.1016/j.renene.2016.12.016

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:110:y:2017:i:c:p:126-140