EconPapers    
Economics at your fingertips  
 

Physical and hybrid methods comparison for the day ahead PV output power forecast

Emanuele Ogliari, Alberto Dolara, Giampaolo Manzolini and Sonia Leva

Renewable Energy, 2017, vol. 113, issue C, 11-21

Abstract: An accurate forecast of the exploitable energy from Renewable Energy Sources, provided 24 h in advance, is becoming more and more important in the context of the smart grids, both for their stability issues and the reliability of the bidding markets. This work presents a comparison of the PV output power day-ahead forecasts performed by deterministic and stochastic models aiming to find out the best performance conditions. In particular, we have compared the results of two deterministic models, based on three and five parameters electric equivalent circuit, and a hybrid method based on artificial neural network. The forecasts are evaluated against real data measured for one year in an existing PV plant located at SolarTechlab in Milan, Italy. In general, there is no significant difference between the two deterministic models, being the three-parameter approach slightly more accurate (NMAE three-parameter 8.5% vs. NMAE five-parameter 9.0%). The artificial neural network, combined with clear sky solar radiation, generally achieves the best forecasting results (NMAE 5.6%) and only few days of training are necessary to provide accurate forecasts.

Keywords: PV forecast power production; Artificial neural network; PV equivalent electrical circuit; NMAE; SolarTechlab (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811730455X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:113:y:2017:i:c:p:11-21

DOI: 10.1016/j.renene.2017.05.063

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:11-21