EconPapers    
Economics at your fingertips  
 

Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction

Deyun Wang, Hongyuan Luo, Olivier Grunder and Yanbing Lin

Renewable Energy, 2017, vol. 113, issue C, 1345-1358

Abstract: Accurate wind speed forecasting is crucial to reliable and secure power generation system. However, the intermittent and unstable nature of wind speed makes it very difficult to be predicted accurately. This paper proposes a novel hybrid model based on variational mode decomposition (VMD), phase space reconstruction (PSR) and wavelet neural network optimized by genetic algorithm (GAWNN) for multi-step ahead wind speed forecasting. In the proposed model, VMD is firstly applied to disassemble the original wind speed series into a number of components in order to improve the overall prediction accuracy. Then, the multi-step ahead forecasting for each component is conducted using GAWNN model in which the input-output sample pairs are determined by PSR technique. Finally, the ultimate forecast series of wind speed is obtained by aggregating the forecast result of each component. The proposed model is tested using two real-world wind speed series collected respectively in spring and autumn from a wind farm located in Xinjiang, China. The experimental results show that the proposed model outperforms all other comparison models including persistence method, PSR-BPNN, PSR-WNN, PSR-GAWNN and EEMD-PSR-GAWNN models adopted in this paper, which demonstrates that the proposed model has superior performances for multi-step ahead wind speed forecasting.

Keywords: Multi-step ahead; Wind speed forecasting; Variational mode decomposition; Phase space reconstruction; Wavelet neural network (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117305992
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:113:y:2017:i:c:p:1345-1358

DOI: 10.1016/j.renene.2017.06.095

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1345-1358