EconPapers    
Economics at your fingertips  
 

Total glucose yield as the single response in optimizing pretreatments for Elaeis guineensis fibre enzymatic hydrolysis and its relationship with chemical composition of fibre

Ying Ying Tye, Cheu Peng Leh and Wan Nadiah Wan Abdullah

Renewable Energy, 2017, vol. 114, issue PB, 383-393

Abstract: In this study, a new approach viz. total glucose yield (TGY) was used as the single response for the optimization of various pretreatments of oil palm (Elaeis guineensis) empty fruit bunch (EFB) fibre through response surface methodology. TGY was calculated by multiplying the enzymatic saccharification yield and pretreatment solid recovery yield. The optimum condition of each pretreatment was calculated based on the estimation model built and then verified experimentally. The optimum conditions for water, acid and alkali pretreatments were 170 °C for 30 min, 120 °C for 45 min in 2.0% (v/v) H2SO4 solution and 110 °C for 45 min in 3.0% (v/v) NaOH solution, respectively. Based on chemical composition analysis, although both the water and alkali pretreated EFB fibres exhibited more than 99% of the cellulose was converted into glucose, water pretreated fibre achieved the highest TGY, as it retained higher recovered glucose content. This study also verified that the use of TGY on the basis of original fibre weight was more appropriate than the enzymatic saccharification yield in the optimization study of biomass pretreatment, as it also considered the loss of the cellulose during pretreatments.

Keywords: Chemical composition; Enzymatic hydrolysis; Oil palm empty fruit bunch fibre; Pretreatment; Response surface methodology; Total glucose yield (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117306547
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:114:y:2017:i:pb:p:383-393

DOI: 10.1016/j.renene.2017.07.040

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:383-393