Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators
S.M. El-Bashir
Renewable Energy, 2018, vol. 115, issue C, 269-275
Abstract:
Transparent nanocomposite films were spin-coated from sulfonic acid modified polycarbonate and fluorescent dye 3-(benzothiazol-2-yl)-7-(diethylamino)-2-oxo-2H-1-benzopyran-4-carbonitrile) and doped with different concentrations of ZrO2 nanoparticles to form fluorescent PC/ZrO2 nanocomposite films. The refractive index of the investigated nanocomposite films was increased by increasing the amount of ZrO2 NPs. It was also found that, adding zirconia nanoparticles controlled the orientation of dye molecules in PC host leading to enhanced fluorescence anisotropy. The trapping efficiency was calculated as a function of dipole orientation for all concentrations of ZrO2 NPs and reached 96.5% for vertically aligned dye molecules and 90.6% for horizontally aligned. These results indicated that aligning the transition dipoles of dye molecules is promising for the enhancement of the edge emission of luminescent solar concentrator (LSC) waveguides.
Keywords: Polycarbonate; ZrO2 nanoparticles; Fluorescence polarization; Luminescent solar concentrators (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811730770X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:269-275
DOI: 10.1016/j.renene.2017.08.016
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().