EconPapers    
Economics at your fingertips  
 

Optimal wind power generation investment, considering voltage stability of power systems

Saman Nikkhah and Abbas Rabiee

Renewable Energy, 2018, vol. 115, issue C, 308-325

Abstract: Studies show that improper sizing and placement of wind farms (WFs) lead to undesired investment and operation costs as well as the risk of voltage instability. Thus, optimal placement of WFs and enough loading margin (LM) are important factors which ensure the voltage stability of system as well as optimal investment and expenditure for WFs development. In this paper, modal analysis is used to determine the optimal place of WFs from the voltage stability viewpoint. Moreover, a new voltage stability constrained wind energy planning (VSC-WEP) model is proposed to determine the optimal yearly wind power penetration while satisfying voltage stability constraints. A 10-years horizon is considered and the net profit from the energy procurement via the WFs' installed optimally, is maximized. Furthermore, the added capacity of WFs and the net profit are analyzed by sensitivity analyzes to investigate the impact of various technical and financial factors on the obtained results. The proposed VSC-WEP model is implemented on the IEEE New-England 39-bus test system, and solved by General Algebraic Modeling System (GAMS) optimization package. The simulation results demonstrate the capability of the proposed model for optimal determination of WFs capacity while preserving a proper LM of system.

Keywords: Loading margin (LM); Loadability limit (LL); Voltage stability; Wind energy planning; Wind farms (WFs) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308145
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:308-325

DOI: 10.1016/j.renene.2017.08.056

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:308-325