Short-term wind power forecasts by a synthetical similar time series data mining method
Gaiping Sun,
Chuanwen Jiang,
Pan Cheng,
Yangyang Liu,
Xu Wang,
Yang Fu and
Yang He
Renewable Energy, 2018, vol. 115, issue C, 575-584
Abstract:
As the aggravating influence of growing wind power, wind power forecasting research becomes more important in economic operation and safety management of power system. A novel short-term wind power forecasting methodology consists of a hybrid clustering method and a wavelet based neural network is introduced. The clustering similar measure function combines the Euclidean Distance and Angle Cosine together, aims to identify the similar wind speed days which are close in space distance and have similar variance trend synthetically. Then similar daily samples as the predicting days are treated as training samples of an improved particle swarm optimization based wavelet neural network. The proposed forecasting strategy is applied to two real wind farms in China. The results demonstrate that the strategy can identify the similar time series and improve the predicting accuracy effectively, compared with some other forecasting models.
Keywords: Wind power forecasts; Hybrid clustering method; Similarity measure; Wavelet neural network (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:575-584
DOI: 10.1016/j.renene.2017.08.071
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().