Residential solar water heaters in Brisbane, Australia: Key performance parameters and indicators
Abel S. Vieira,
Rodney A. Stewart,
Roberto Lamberts and
Cara D. Beal
Renewable Energy, 2018, vol. 116, issue PA, 120-132
Abstract:
A multi-parametric sensitivity analysis of Solar Water Heater (SWH) systems was undertaken for the city of Brisbane in Australia using computational models calibrated by experimental data. The models were calculated using EnergyPlus 8.6. The following technical specification parameters were assessed in the modelling: (i) solar collector efficiency; (ii) solar collector area; (iii) tank volume; (iv) tank heat loss; (v) electric back-up heating power rate; (vi) electric back-up heating position (height) for vertical tanks; and (vii) electric back-up heating temperature range. The site-specific parameters included: (i) solar collector direction; (ii) solar collector tilt angle; (iii) solar collector shadowing; (iv) solar collector dust accumulation; (v) hot water pipe insulation; (vi) hot water pipe length; (vii) electricity tariff time-of-use; and (viii) cold water temperature. User behaviour patterns were comprised of the following parameters: (i) end-use water temperature; (ii) end-use water demand; and (iii) end-use time-of-use. For all parameters, two system types were assessed, namely: (i) thermosiphon systems with natural (passive) circulation in collectors and unstratified horizontal hot water storage tanks; and (ii) split systems with forced (pumped) circulation in collectors and stratified vertical hot water storage tanks. The performance of SWHs was analysed considering both energy performance indicators (i.e. total and peak-hour energy consumption, solar fraction and energy intensity) and level of service indicators (i.e. compliance with recommended hot water temperatures for Legionella spp. control and comfort levels). Notwithstanding the prevalence of thermosiphon systems among SWH technologies, results indicate that split systems usually outperformed thermosiphon systems both in terms of energy efficiency and level of service, and hence should be a preferred option for energy efficiency initiatives and policies.
Keywords: Solar water heater; Sensitivity analysis; Site-specific variables; Technical specifications; Energy performance; Level of service (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117309163
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:116:y:2018:i:pa:p:120-132
DOI: 10.1016/j.renene.2017.09.054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().