Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade
Hang Meng,
Fue-Sang Lien and
Li Li
Renewable Energy, 2018, vol. 116, issue PA, 423-437
Abstract:
Wake effect causes fatigue increase on the horizontal axis wind turbine (HAWT) blades. This wake-induced fatigue has significant impacts on the efficiency and lifespan of the whole wind farm. However, conventional aeroelastic codes are deficient in terms of turbulent wake modelling and wake interaction modelling. To accurately carry out the aeroelastic simulation in multi-wake operation, an “elastic actuator line” (EAL) model is proposed. Essentially, this model is the combination of the actuator line (AL) wake model and a finite difference structural model. The present research includes two parts. Firstly, the proposed EAL model is outlined. To better establish the two-way coupling between the structural model and the AL model, the transformation of a set of structural equations is presented. Secondly, numerical structural model is established. To verify the present model, the simulated results by EAL for a single NREL 5 MW turbine are compared with those obtained with the aeroelastic code FAST. And the comparison shows a good agreement for both high and low TSRs (Tip-Speed-Ratios). Another case study for the wake interaction involving two staggered HAWTs is also carried out, which shows that the downstream wind turbine truly experiences an obvious wake-induced fatigue increase based on our equivalent fatigue load analysis.
Keywords: Wind turbine wake; Wake-induced fatigue; Actuator line model; Wind turbine aeroelastic simulation for wind turbine blade (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117308364
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:116:y:2018:i:pa:p:423-437
DOI: 10.1016/j.renene.2017.08.074
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().