Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations
Rahul Goyal and
Bhupendra K. Gandhi
Renewable Energy, 2018, vol. 116, issue PA, 697-709
Abstract:
Electricity generation from solar and wind has raised a significant concern about the stability of grid networks. Hydroelectricity plays an important role to balance the stability of grid network. In order to improve the stability of presently high loaded grids, hydropower plants are being operated over a wide range of operations and experiencing frequent start-stop, load variation, and emergency shutdown. The power generating unit including turbine needs to sustain sudden change in its operating condition to balance the grid frequency. The objective of this paper is to present the operating problems of Francis turbine in the present energy generation scenario. The turbine suffers from several dynamic instabilities during off-design and transient operations. Several low and high-frequency pressure fluctuations are observed during both, steady state and transient operating conditions. The off-design operations such as part load and high load cause pressure fluctuations due to RSI, RVR and cavitation. The transient operations lead to heavy cyclic loading of its moving and stationary parts. Francis turbine also experiences asymmetric loading on the runner, cyclic stress, wear and tear; all of which reduce operating life of the components. Sometimes these rapid transient may cause failure of the unit and decouple it from the system.
Keywords: Hydropower; Francis turbine; Steady-state operations; Transient operations; Rotor-stator interaction; Rotating vortex rope (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117309734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:116:y:2018:i:pa:p:697-709
DOI: 10.1016/j.renene.2017.10.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().