Development of robust meteorological year weather data
Sleiman Farah,
Wasim Saman and
John Boland
Renewable Energy, 2018, vol. 118, issue C, 343-350
Abstract:
Building energy performance simulations are limited to typical meteorological weather conditions available in simulation software. Such simulations are insufficient for analysing energy performance sensitivity to a range of probable weather conditions. This research presents a method for developing robust meteorological weather data that can be used for energy performance sensitivity analysis without the need to access historical weather data. The method decomposes dry bulb temperature (DBT) and global horizontal solar radiation (H) into deterministic and stochastic components. For the typical weather data of the City of Adelaide, the deterministic component for each of DBT and H consists of a single frequency Fourier series. The stochastic components consist of 1-lag and 2-lags autoregressive models for DBT and H respectively. The stochastic components also include randomly selected values from the residuals of the autoregressive models. Based on this method, the coldest and hottest weather conditions were selected to simulate the energy performance of a single space. The results revealed 39% more cooling and 15% less heating in the hottest year, and 14% more heating and 64% less cooling in the coldest year. The results indicate that simulations based on typical weather conditions only are insufficient for assessing buildings' energy performance.
Keywords: Typical meteorological year (TM2); Robust synthetic data; Fourier series; Energy simulation; Levene's test; Kolmogorov-smirnov two-sample test (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311333
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:343-350
DOI: 10.1016/j.renene.2017.11.033
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().