CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings
H. Montazeri and
F. Montazeri
Renewable Energy, 2018, vol. 118, issue C, 502-520
Abstract:
Cross-ventilation using rooftop wind-catchers is very complex as it is influenced by a wide range of interrelated factors including aerodynamic characteristics of the wind catcher, approach-flow conditions and building geometry. Earlier studies on wind-driven cross-ventilation in buildings have shown the significant impact of the geometry and position of openings on the flow and ventilation performance. However, this has not yet been investigated for cross-ventilation using wind catchers. This paper, therefore, presents a detailed evaluation of the impact of the outlet openings on the ventilation performance of a single-zone isolated building with a wind catcher. The evaluation is based on three ventilation performance indicators: (i) induced airflow rate, (ii) age of air, and (iii) air change efficiency. High-resolution coupled 3D steady RANS CFD simulations of cross-ventilation are performed for different sizes and types of outlet openings. The CFD simulations are validated based on wind-tunnel measurements. The results show that using outlet openings very close to the wind catcher will not increase the induced airflow, while it leads to a considerable reduction in the indoor air quality. A combination of one-sided wind-catcher and window is superior, while the use of two-sided wind-catchers leads to the lowest indoor air quality and air change efficiency.
Keywords: Wind tower; Natural ventilation; Wind-driven ventilation; Indoor air quality (IAQ); Age of air; Ventilation efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:502-520
DOI: 10.1016/j.renene.2017.11.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().