Cyclic thermal performance analysis of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank
Meng-Jie Li,
Yu Qiu and
Ming-Jia Li
Renewable Energy, 2018, vol. 118, issue C, 565-578
Abstract:
In the study, a transient, two-dimensional and axisymmetric model of the packed-bed thermocline tank is developed. Based on the model, the cyclic thermal performance of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank (SLPBTT, MLPBTT) are analyzed. First, the analysis of cyclic thermal performance of SLPBTT shows the performance can be enhanced by reducing the retention thermocline thickness. Second, this is the first time for a detailed investigation of the expanding and the shortening effects on thermocline thickness at the interface between two kinds of filler. In addition, a novel MLPBTT is designed utilizing the above interface effects for improving the performance by controlling thermocline expansion. Finally, the studies on the performance of MLPBTTs adopting three fillers (quartzite rock, cast iron, and high-temperature concrete) with different heights present that the useful energy can be increased while thermal efficiency will be reduced with the increasing cast iron's height. An optimized MLPBTT shows a significant improvement in the useful energy of 10.5% and a small drop in thermal efficiency of 2.1% in discharging process compared with those of SLPBTT using the quartzite rock. The results can be beneficial for the design and optimization of PBTT.
Keywords: Packed-Bed; Thermocline; Thermal energy storage; Solar energy; Cyclic process; Novel Multi-Layered Packed-Bed (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117311394
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:565-578
DOI: 10.1016/j.renene.2017.11.038
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().