EconPapers    
Economics at your fingertips  
 

Performance analysis of multi-salt sorbents without sorption hysteresis for low-grade heat recovery

J. Gao, L.W. Wang, G.L. An, J.Y. Liu and S.Z. Xu

Renewable Energy, 2018, vol. 118, issue C, 718-726

Abstract: Three types of consolidated compact composite multi-salt sorbents are studied, which are mixtures of NH4Cl, CaCl2 and MnCl2 with different proportions. The Clapeyron curves under non-equilibrium conditions and isobaric sorption/desorption curves are tested. The multi-salt sorbents show combining properties of NH4Cl, CaCl2 and MnCl2 at different temperatures. One distinguished feature of these three types of multi-salt sorbents is the disappearance of sorption hysteresis. However, there are some differences in cycle sorption quantities, which may influence refrigeration and energy storage performances for different types of multi-salt sorbents. The behaviors of different types of sorption working pairs are analyzed for continuous sorption refrigeration cycle and energy storage system. Results indicate that the multi-salt sorbents are more suitable for variable temperature heat source and low-grade heat recovery than single salt sorbents. The NH4Cl/CaCl2/MnCl2 mixture with the mass ratio of 1:3:2 generates more cooling power than the other two with similar coefficient of performance (COP), while the multi-salt sorbent with the mass ratio of 3:2:1 is optimal for the thermochemical sorption energy storage system. Analysis of exergy efficiency and exergy destruction also shows that the multi-salt sorbents adapt better for low temperature low-grade heat.

Keywords: Multi-salt sorbents; Non-equilibrium; Sorption hysteresis; Refrigeration; Energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811731145X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:718-726

DOI: 10.1016/j.renene.2017.11.044

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:718-726