Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants
Andrey Yasinskiy,
Javier Navas,
Teresa Aguilar,
Rodrigo Alcántara,
Juan Jesús Gallardo,
Antonio Sánchez-Coronilla,
Elisa I. Martín,
Desireé De Los Santos and
Concha Fernández-Lorenzo
Renewable Energy, 2018, vol. 119, issue C, 809-819
Abstract:
The paper presents an analysis of the properties of TiO2-based nanofluids such as their physical stability and heat transfer performance. The nanofluids were prepared with a eutectic mixture of diphenyl oxide and biphenyl with the addition of TiO2 nanoparticles and 1-octadecanethiol (ODT), used as a surfactant. The nanofluids were tested to determine their thermal and physical properties, such as stability, density, viscosity. The introduction of TiO2 nanoparticles accompanied with equal quantity of ODT was seen to sharply enhance the properties of the system in terms of heat transfer in concentrating solar power (CSP) plants. In particular, the system became stable after 3–5 days, and the settlement rate depended on the nanoparticle concentration. There was a slight increase in density and viscosity of no more than 0.12% and 4.85%, respectively. The thermal properties improved significantly, up to 52.7% for the isobaric specific heat and up to 25.8% for the thermal conductivity. The dimensionless Figure of Merit parameter (FoM), which is based on the Dittus-Boelter correlation, was used as a criterion for evaluating efficiency. At all the temperatures tested the nanofluid with 2.5·10−4 wt% (volume fraction of 2.44%) of TiO2 performed best, increasing the efficiency by up to 35.4% with regard to the pure heat transfer fluid (HTF) used in CSP plants. Thus, nanofluids based on TiO2 nanoparticles seem to be a promising alternative to HTFs in CSP plants.
Keywords: Nanofluids; Concentrating solar power; Thermal properties; Heat transfer fluids (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117310182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:119:y:2018:i:c:p:809-819
DOI: 10.1016/j.renene.2017.10.057
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().